- numpy - scipy - pandas - matplotlib - scikit-image - scikit-learn import numpy as np import matplotlib.pyplot as plt # Generating data for the heat map # data = np.random.random(( 12 , 12 )) data = np.arange(100).reshape((10,10)) data = np.sin(data * 0.1) fig, ax = plt.subplots() plt.imshow( data , cmap = 'gray' ) fig random_image = np.random.rand(500,500) plt.imshow(random_image, cmap='gray') fig import numpy as np from skimage import data import matplotlib.pyplot as plt fig, ax = plt.subplots() image = data.coins() astro = data.astronaut() astro_sq = np.copy(astro) astro_sq[50:100, 50:100] = [0,255,0] plt.imshow(astro_sq, cmap='gray') fig # Create a signal sig = np.zeros(100, np.float) sig[30:60] = 1 fig, ax = plt.subplots() ax.plot(sig) ax.set_ylim(-0.1, 1.1) fig # Convolve it with a kernel from scipy import ndimage as ndi fig, ax = plt.subplots() diff = np.array([1, 0, -1]) dsig = ndi.convolve(sig, diff) plt.plot(dsig) fig # simple SVD example U, Sigma, VT = np.linalg.svd([[1,1], [7,7]]) print("U: ", U, "Sigma: ", Sigma, "VT: ", VT) print("Reconstruct original: ", U @ np.diag(Sigma) @ VT) import numpy as np from skimage import data import matplotlib.pyplot as plt fig, ax = plt.subplots() astro = data.astronaut() def shift_image(X, dx, dy): X = np.roll(X, dy, axis=0) X = np.roll(X, dx, axis=1) if dy>0: X[:dy, :] = 0 elif dy<0: X[dy:, :] = 0 if dx>0: X[:, :dx] = 0 elif dx<0: X[:, dx:] = 0 return X def mapRange(value, low1, high1, low2, high2): return low2 + (high2 - low2) * (value - low1) / (high1 - low1) def clamp(num, min_value, max_value): return max(min(num, max_value), min_value) # Convert to f64 0-1 # astro_shift = shift_image(astro, 10, 0) astro_f64 = astro.astype(np.float64) astro_01 = mapRange(astro_f64,0,255,0,1) # process image here astro_mod = 1.2 * astro_01 ** 2 + 0.2 # Convert back to uint8 0-255 smallest = astro_mod.min(axis=(0,1)) largest = astro_mod.max(axis=(0,1)) astro_mod = astro_mod.clip(0,1) astro_0255 = mapRange(astro_mod,0,1,0,255) # astro_mod = astro - 50 #(astro + astro) // 2. plt.imshow(astro_0255.astype(np.uint8)) fig